
Simple. Scalable. Concurrent.

GOLANG
DEVELOPMENT

 by QAREA

CONTENTS
Table Of

01. Why Golang?

02.

04.

03. Reliability

05. Microservices

The Perfect Case

Cross-platform systems
from the box

GOLANG
Why

Concurrency is not the only thing Golang
comes with “From The Box”. It supports a
wide library of Databases that allow for
realization of RDBMS-based development
on the fly. What does this bring to the
table? Solid, responsive microservices that
play along nicely in a given system.

Furthermore, Go’s from the box database
support has allowed for quick
development of yet another microservice,
only now it’s HTTP-based. Same can be
said about development with any other
DB.

Ok, these are just a few reasons why
QArea uses Golang. But why is the entire
world losing their minds over it?

Simple. The language was created with a
bold intent of improving programming as it
is and it has delivered exactly that.

Golang is a growing trend in the software
development community. Thanks to its
“from the box” concurrency, stability, and
scalability, the language has become one
of the core technologies for countless
businesses. Some of the brightest
examples of companies using Golang are:

(if you are interested in other examples, the full list
can be found here. Who knows, perhaps you will
find one of your direct competitors there.)

https://trends.google.com.ua/trends/explore?date=today%205-y&q=Golang
https://en.wikipedia.org/wiki/Relational_database_management_system
https://github.com/qarea/planningms
https://github.com/qarea/planningms
https://github.com/qarea/redminems
https://github.com/golang/go/wiki/GoUsers

HERE’S WHAT GOLANG IS
DESIGNED TO DO:
Speed up development and eradicate
slow builds

Cross-platform builds from the box that
support a multitude of technologies

Decrease the learning curve and simplify
entry for beginner programmers

Open Source nature that allows for vast
community support

Better code readability and better
understanding of a program

Free updates for all as early and as often
as possible

Prevention of re-work and effort
duplication

Automation-oriented technologies from
the start with amazing concurrency

That looks amazing on paper. But does Golang work the way it
was intended to in real life? Only a solid case may serve as proof
of concept. Luckily we’ve got just that all wrapped and ready.

QArea is a large software development
outsourcing company with a 17 year history.
Throughout the years we have delivered
complex solutions to more than 800 businesses.
Also we’ve learned quite a few lessons.

Here’s one of them: There are similarities
between some products and there are specific
differences in every new case. Unfortunately,
there’s a general rule of thumb - if we are
working on a project with at least some share of
legacy code in it, we are going to encounter
some problems.

Here’s a fine example of what is meant. One of
the more recent projects we nailed had the
following “features”:

Now that’s what we call a Full House! And, as
you may have guessed from the title of the
paper, we used Golang to transform these
challenges into an A+ project.

1. 3-rd party apps integrated into the system

2. Never supported before

3. Original developers are long gone

4. 90% of the certificates were about to expire

5. Documentation is in utter chaos

PERFECT CASES
The

First, we had to sort out the documentation and certificate-related issues. We
couldn't have done it manually, so we did what every smart developer would
do under the circumstances - we used automation. Golang was friendly
enough to provide us with a tool just for that - the Log Package. It is designed
to simplify these kinds of documentation checks. It works as follows: If the
TLS certificates are loaded to the server in an incorrect order, our team would
receive a notification (error message).

Then the HTTP package came to our aid. It’s quite simple in implementation,
and, at the same time, it has an amazing function - the ListenAndServeTSL.
The function checks for the certificate’s validity and authority. Plain and simple
and just what we needed!

Crypto/tls was also a part of the bigger picture. This function configures
usable STL/SSL versions and it implements TLS 1.2. Or, in simpler words, we
had the security of the system covered in terms of connections thanks to
identified elliptic curves and cipher suites.

How did Golang help us with legacy code and poor documentation?

WHAT DID WE DO?

Simple, accessible automation that decreases the budget needed for the
completion of a complex project

Lightning-fast failure reports and error messages that are ready for analysis
within moments, thus decreasing required manhours on the project

A defined path for certificates that’s both stale and well documented for
future use by other teams (if need be)

All of the benefits come from an open source technology meaning no extra
investments into tools or frameworks are required

https://golang.org/pkg/log/
https://golang.org/pkg/net/http/
https://golang.org/pkg/crypto/tls/

As you can see, the SQUALE Rating is a solid “A”. However, the contribution
is not ours to claim. Golang linters check code before it is committed and
works as a quality check roadblock. Anything larger than minor code issue will
not pass the check, forcing the developer to fix the issues ASAP.

This case is just the tip of an iceberg. Golang has so much more to offer. You
are welcome to learn more about these offerings in the next chapters.

SQALE Rating Technical Debt Ratio

Debt Issues

A 0.1 %

13d 667

0Blocker

Critical 0

Major 0

Minor 241

Info 426

!

"

#

$

%

Project Code Quality Check

DropBox is a behemoth when it comes to cloud services. Don't
take just our word for it though, take a look at the stats that
support the bold claim:

Now that’ what we call a challenge! How did everything work out?

The lion’s share of DropBox’s entire infrastructure
is written in Go

Over 150 developers from the open source
community contributed to the server repository

With colossal volumes of data like that DropBox chose Go as the
primary technology to support some of their largest systems.
Why? According to Tammy Butow, the Site Reliability Engineering
Manager at DropBox, her company had quite the expectations.
Tammy’s team was tasked with development of a reliable and
secure system. Not only that, but DropBox also needed those
security and reliability factors built into the core design.

Additional expectations were as follows: DropBox needed to
create a system that provides annual data with 99.9999999999%
durability and a system with availability over 99.99%.

RELIABILITY

• They have more than 500 million users
• DropBox’s servers store more than 500 petabytes of user data
• There is a multi-exabyte go storage system

Over 1.3 million lines of code were written in Go

http://tammybutow.com/

Here’s something even more interesting - according to
Tammy, despite the colossal volumes of work, the
development team became more productive and generally
they’ve gotten happier. It’s just so easy to be productive with
Go, especially today when there’s a solid standards library
backing important decisions. Standards allow for clarity. If a
change was made to the system, everyone involved will
know exactly how and why it was done.

A heavy emphasis on the microservice architecture that
Golang is known for allows teams to build tools for other
teams. All in one system. All with the same coding standards
that prevent legacy code from entering into the system.

And, for the cherry on top - Go has a stunning array of
debugging tools from the box. The combination is like
Christmas in July to a professional developer who works in a
team and with other team involved in a large-scale project.

DropBox is known for its fast release cycles. They rely heavily
on automated tests that cover the code in order to keep up
the speed that's so much needed in today’s world of cloud
and SaaS. Go’s own unit testing library helps greatly. Testing
is as simple as using pre-made solutions from the library and
running them. Such an approach saves a lot of time and helps
greatly with deployment.

Sounds great on paper, doesn’t it? But did Go work for
DropBox?

If you ever used the app in your life you probably know that
Tammy’s mission ended up with a jaw-dropping success.
That’s just what Go - while in the right hands - does to
large-scale projects.

FROM THE BOX
Cross-platform systems

Go has a library that provides string formatting that also provides the crypt
line function. So, in other words, you are simply saying to the system -
“here’s your string, love. Please print it out.”

What about actually building the program? Just say the following:

Voila, your build is ready. Here’s what you’ve gotten out of it: you have an
ELF 64-bit LSB executable that is not stripped, but statically linked. This
means that the program will run on any 64-bit (or 86bit) you wish to put it
on. No external runtime environments are needed!

Here’s when the fun begins. Few businesses today have the luxury of
running everything on a single system. Your developers, marketing and sales
teams might be using different tools on different platforms or even OS
versions. This makes it challenging for you to build a solution like a time
management app or an ERP system or whatever else you wish for all of
them to use.

What usually happens in businesses is as follows. You have a program
designed for administering a task or a series of tasks. Your dev team is trying
to keep the same runtime on every environment that’s in use, obviously. But
you have way too many of them. They may be even the same OS, but in
different versions.

$ go build main.go.

$ file main

Go changes the rules, of the game, though! If you need to
adjust the code to run on any OS, you only need to adjust
ONE variable!

That’s it. Use an updated build with the Hello World program
and run it on Windows - it will work flawlessly.

You get your MacOS executable. Same program, same code
with 1 change in 1 line is all you need for development of
amazing cross-platform apps!

Same can be said about any other OS.

Sounds nice and peachy, right? But we’ve only discussed
current, relevant systems. What if there’s a 3-rd party
solution you have purchased ages ago for your business and
it has since become an integral element of your business
processes? The firm that sold the app to you is long gone,
there’s no support or updates and shifting to something new
is too expensive or too complicated because it affects
countless processes in various departments?

You’ve already invested a fortune into keeping that app alive
with fixes, patches and duct tape. Is there a way out? Sure.

As we said before - all it takes is one iteration!

Microservice-based architecture is the
future and that future is already here.
Amazing systems like Netflix, Twitter or
Hailo are based on these tiny bad boys.
That’s because the benefits are colossal!

In a monolithic system even the slightest
change in the code can lead to the entire
system collapsing. That’s why we see sites
and servers down all over the web after the
company released a patch or something. A
monolith is not a scalable solution for an
ongoing, evolving business for that exact
reason.

What are microservices then? They are a
system that’s made of tiny clusters of code,
each responsible for a particular feature.
The system runs when all of them are
together and even when one or several of
them are removed. A patch or a change in
the cluster will never lead to the entirety of
your app crushing and it’s easier to find the
soft spot that causes issues in a hundred
lines of code than in several thousands.

MICROSERVICES

Client

Client

Orders

Orders

Orders

Inventory

Client

Gate
way

Monolithic

Web
Layer

Data
Access

Account

Orders

Inventory

Product

Microservices

Ok, so far so good, But why’s Go great for microservice-based architectures?

Concurrency!

Scalability is a major issue in modern software development. Having several microservices isn't
such a big deal. But what will happen when your system will consist of hundreds of them?
Concurrency becomes essential.

Following good coding practices, you can build a server that is highly scalable in-terms of
concurrency, CPU and memory utilization.

"Go's big contribution was the native concurrency story, and arguably the implicit interface
stuff. With these features you get a lot of value, and you get a lot of expressiveness that
wasn't available in languages like C." - Peter Bourgon, an engineering rockstar and a QConn
speaker.

Would you like to know more about Go?

Сontact QArea and submit your questions into this simple form. It won't take longer than a
minute. Our team of analysts will come back to you with a working solution ASAP. Allow us to
guide you through everything there is to know for your next big, scalable project!

https://goo.gl/KudSbV

QArea is a custom software development
company with 17 years experience in the
industry. It provides a full cycle of the desktop,
web, and mobile application development,
testing and QA services.

QArea’s offices are located in the US and
Europe with 4 R&D centers in Eastern Europe.
QArea provides a full cycle of the desktop,
web, and mobile application development,
testing and QA services.

The Company stands for client-oriented
services with a well-rounded approach. The
team of 250+ qualified engineers specializing
in Golang, Python, Java, JavaScript, C++ and
other most demanded programming languages
stimulate the development of truly unique
customized products. QArea is a winner of
numerous industry awards, named as a TOP
outsourcing company in 2017. World’s biggest
brands like Microsoft, Skype, HuffPost and
more intrust QArea to build software solutions
united by the high standards of quality.

! qarea.com
" contact@qarea.com

facebook.com/qarea.inc
$ twitter.com/QArea
% linkedin.com/company/qarea/

& +1 310 388 93 34
 +41 43 508 07 94
 +38 057 763 6024

About QArea

Contacts

https://goo.gl/qqJjCJ
mailto:contact@qarea.com
https://www.facebook.com/qarea.inc/
https://twitter.com/QArea
https://www.linkedin.com/company/qarea/

